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Abskact. The singularity analysis of the system of nonlinear equations iu,=u.=+alZa'- ip, 
p,+ipp+ur=O, r,=&?p'+u*p) (where * denotes the complex eonjugation, functions~u 
and p are complex, function r and constants R and p are real) indicztes that the system 
has the Painlevb property at a =f only. This analytic exclusiwness of the case R =t agrees 
with results by Doktorov and Vlasov who selected the same case by a modification of the 
Wahlquist-Eaabrook method and found a corresponding Lax pair. In the integrable case, 
the method of truncating WeissTabor-Carnevde expansions determines a Ecklund auto- 
transformation which, unfortunately, violates the condition of complex conjugateness 
between II and U*. Another Blcklund autotransformation. mmvatihle with this condition. 
is found by a technique of Miura translormations. 

The Painlev6 property, formulated for partial differential equations by Weiss, Tabor 
and Carnevale [I] a decade ago, is generally considered as a reliable sufficient condition 
for integrability of nonlinear systems 121. Since any rigorous proof is absent, the whole 
confidence in the relation between the Painlev6 property and integrability is based on 
results of the singularity analysis of particular integrable and non-integrable equations. 
An impressive confirmation of sufficiency of the Painlev6 property for integrability is 
achieved in those investigations, where the singularity analysis is carried out for equa- 
tions containing free parameters, and ihe Painlev6 test selects integrable cases only [3- 
61. In the present letter, devoted to the Painlev6 analysis of a two-parameter nonlinear 
system of five equations of total order seven, the reliability of the Painlev6 test will be 
confirmed again. Moreover, we will construct two dj$ereizf Bicklund autotransforma- 
tions for the integrable case of the system: the former by truncating Weiss-Tabor- 
Carnevale expansions, and the latter by a technique of Miura transformations. 

Let us consider the following system of two complex and one real nonlinear 
equations : 

2 *  ia,=a,,+aa a -ip 

px+ipp + m =O (1) 

r, =$(ape + a*p) 

where functions a and p are complex, function r and parameters a and fl  are real, 
and * denotes the complex conjugation. This system was introduced into nonlinear 
optics by Doktorov and Vlasov 171, who tested its integrability by a modification [8] 
of the Wahlquist-Estabrook method, selected the only case a=; (for all p )  where the 
prolongation structure could be closed, and constructed a Lax pair for this case (see 
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[9] for a detailed proof). Starting the Painlev6 analysis of system (1). we must 'complex- 
ify' the system, i.e. supplement (1) by the complex conjugations of its first and second 
equations and consider functions b=a* and q=p* as independent of a and p respec- 
tively. Thus, we have the following system of five nonlinear equations of total order 
seven: 

a,+ a 2 b  - ia, -ip = 0 

b,+ aab2+ ib,+iq= 0 

px+ isp+ ar= 0 

qx-ipq+br=O 
r,-$(aq+bp) = 0. 

System (2) is a normal system written in the Kovalevskaya form, a hypersurface 
&, r )=O is non-characteristic for (2) if p,.#O, and the general solution of (2) is 
determined by seven arbitrary functions given at any noncharacteristic hypersurface 
[lo]. Following Ward [ 111, we believe that the Painlev6 property mmt nof fix any 
structure of solutions at characteristic hypersurfaces. Analysing singularities of solutions 
at non-charactenstic hypersurfaces q=O, we will use the Kruskal ansatz [12] qX= 1. 

According to the Weiss-Krnskal algorithm 121 which is sensitive to algebraic and 
non-dominant logarithmic branch points, the leading behaviour of solutions of (2) is 

q=qopu4+. . . , and r=ropu5+. . . , where 6,. . . , ro are non-zero functions off,  and 
aI, . . . , c5 are complex constants. Substituting these expressions for a ,  . . . , r into (2) 
determines the following two branches. 

assumed to be algebraic: a=ai,qP+. . . , b=bopu2+. . . , p=pop+.  . .) 

Branch 1. 01=02=-1, CT~=CT~=US=U, Re0>-3, a # O ;  
aobo=-2/a,po= -s rO/a ,  qo= -boro/a: 
functions ao/bo and ro are not determined, i.e. two resonances appear in zero position; 
the compatibility condition at these resonances is 

a = 2 ~ - ~ .  (3) 

Branch 2. Q I = T ,  a2= -7-2, u ~ = T - ~ ,  04= -7-4, as= -3, r# -4, - 1,2; 
aobo=(r-2)(z+4),po=i(r+ l)(r+4)ai,, qo= -i(r+l)(r-2)b0, ro= -i(r+l)(r-2) 
(7+4); 
function @/bo is not determined, i.e.' one resonance appears in zero position; 
the compatibility condition at this resonance is 

a = -2 -20(r -2)-'(r +4)-'. (4) 

Since the Painlev6 property bans movable branch points, constants U and r must be 
integers satisfying the condition 

(02+ l)[(r+ 1)2+1]=10 ( 5 )  

which follows from (3) and (4). Solving (5)  in integers, we find that there are only two 
values of a at which solutions of system (2) have no movable dominant algebraic 
branch points: (i) a=2, a= f l ,  r = - l f 2 ,  and (ii) a=$, a = f 2 ,  r = - l f l  (the 
upper or lower sign is taken for cr and z independently). 
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The next step of the Weiss-Kruskal algorithm consists in h d i g  positions of all 
resonances. The standard way [2, 421 brings us to the following equations determining 
position NDf a resonance: 

(N+ i)NZ(N-3)(N-4)(N+ U)(N+ZU) =o (6) 

for branch 1, and 

(N+ l )N(N-  3)(N- 6){N3- 7N2 + [I2 - 10(r + 1)2]N+40(r + =O (7) 

for branch 2. All roots N of (6) and (7) are integers in both cases (i) and (ii). The 
general solution of system (2) must contain seven-arbitrary functions of t ,  and this is 
achieved in branch 1 at U = - 1 for (i) and U = -2 for (U) (the generic subbranch, where 
six of N are non-negative, and N=-1 corresponds to arbitrary q). Second subbranch 
of branch 1 (positive U) and the whole branch 2 are non-generic. So both cases a =2  
and a =$ have passed this step of the algorithm well. 

At the last step of the Weiss-Kruskal algorithm, the recursion relations are con- 
structed, and the compatibility conditions are checked at all non-negative resonances 
of all branches; all the compatibility conditions must be identities. The generic sub- 
branch (o=-1) of the case a = Z h a s  resonances N=-l ,O,O,  1,2,3,4; however the 
compatibility condition p,+2#=0 arises at resonance 1. Since the condition is not an 
identity, the general solution of system (2) contains a movable nondominant logarith- 
mic singularity when a=2. Only the case a =j remains, when system (2) does possess 
the Painlev6 property. In this case, the generic subbranch (U= -2) has resonances N= 
-1,O, 0, 2,3,4,4, the non-generic subbranch (o=2) of branch 1 has resonances N= 
-4, -2, -1,O, 0, 3,4, and branch 2 has resonances N= -2, -1,O, 3,4,5,6. The com- 
patibility conditions at N=O, namely (3) and (4), have been satisfied. Ten more compat- 
ibility conditions at positive N turn ont to be identities as well. Checking this by hand 
is the best way to get a feeling for how mysterious the F'ainlek property is. 

Thus, the singularity analysis of (2) indicates that the system has the Painlev6 
property only in the case a =$ (for alJ /3; but parameter f l  is unessential: if P ZO, then 
scale transformations can make p = 1). This agrees with the result by Doktorov and 
Vlasov [7]. Hereafter we will consider only the integrable case a =$. Since its Lax pair 
is already known [7], let us try to 6nd a Backlnnd autotransformation by the method 
of truncating Weiss-Tabor-CarnevaIe expansions [13]. For this purpose, equivalent 
singular expansions by powers of function x =(q-'px-$q;lpxx)-l, proposed by Conte 
[14], are very useful (here and below the Kruskal ansatz p.== 1 is nof used for function 
p determining the singularity manifold). Truncating.must be performed in the generic 
subbranch, because the Backlund autotransformation sought should be applicable to 
any solution. Substituting expressions a=uo ~ - l + a ~ ,  b=boX-' + b l ,  p= 
p o x - 2 + p l  x - l + p ~ .  q=qOX-'+qI x-'+q2 and r=roX-'+rl ,y-l+rz into (2 )  gives us 
a system of 20 nonlinear equations for 14 functions of x and t: 00. al, bo, b , ,  p0,pl , p 2 ,  
qo, ql ,q2,  ro, rl , r2 and q. That system turns out to be compatible, gives explicit expres- 
sions for coefficients %, U I ,  . . . , rl  and r2 in terms of two functions q andf(fappears 
at resonance 0 as u&,=exp(Zif)) and imposes the following two nonlinear equations 
of third and fourth order on p andf: 

fr=~f:+Pfx+(~+a)c-s+~a++a2 (8) 
fuUx+fxp + a ) ( 3 ~ +  c+ P )  + 2s1 + m p  + a)cX+sxi + (8'- a2)cv+ asr - s,=o 
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where A is any complex constant (of integration), S=qlllp,-~px 9- and 3 -2 2 

c= -9- xlp,. Explicit expressions for a and b in terms of q andfare simple: 
a = (2i9-'qX -iq;'vzT+fx- a.) exp(if) 
b=(2i9-19p?,-i9~'9~~-,-f,+a.) exp(-if). (9) 

We omit complicated expressions forp, q and r, hut they can be obtained, if necessary, 
by substituting (9) into the first three equations of system (3). The seventh-order system 
(8) is a normal system possessing the same characteristic directions and number of 
arbitrary functions in its general solution as does system (2) [IO]. Expressions (9) 
together with corresponding expressions for p ,  q and r determine a Miura transforma- 
tion of system (8) into system (2). The truncation procedure employed [ 13, 141 provides 
onemore Miura transformation (~,f)+(& &p, g, F) between (8) and (2), where expres- 
sions for 5,.  . . , Tare obtained from expressions for a,. . . , r by way of q+q+ y ( y =  
constant) and y - m .  This pair of Miura transformations generates a Bsicklund auto- 
transformation for system (2), becanse one can find p, and f from any 'old' solution 
a,. . . , r and then map these 9 andfinto a 'new' solution ci, . . . , T. 

Unfortunately, this Bicklnnd autotransformation, valid for system (2), is useless 
for system (I). Indeed, conditions b=a* and 6=ci*, imposed on (9)  and corresponding 
expressions for E and 6, lead through (8) to 

a= ( 5  + iq) exp(icx+iv) 

and 

a= (-5 + iq) exp(icx + iv) 
where constants c, q and < and function ~ ( t )  are real and arbitrary, c=Rek.  This 
means that most of the solutions of system (I)  are transformed not into solutions of 
(1) but into solutions of 'complexified' system (2). The same phenomenon takes place 
for the nonlinear Schrodinger equation ia,=a,+$?a* which is a special case (p=O) 
of system (1). The 'complexified' equation, Le, the system of 

am+$a2b - iu, = 0 a n d .  b,+fab2+ib,=0 

has the Painlev6 property, and the truncating procedure is compatible for it [15]. The 
truncated expansions have form (9) (where 9 andfsatisfy equationsf;+ C+L=O and 
f,=$f:-Af,-S+&t*, notations are the same as in (8 ) )  and represent a pair of Miura 
transformations which generate a Bicklund autotransformation for the 'complexified' 
equation. It is surprising that this autotransformation is inapplicable to the nonlinear 
Schrodinger equation itself, because conditions b=a* and &=a* restrict a and ci very 
considerably (admissible a and d have the same form as in the case of system (I) above, 
but ~ ( t ) = [ c ~ - f ( 5 ~ +  q2)]t+constant). However, the nonlinear Schr6dinger equation 
is known to possess another Bicklund autotransformation, compatible with the complex 
conjugateness of a and a*, which was derived from the Lax pair by Cben [ 161. Therefore 
we may expect that Doktorov-Vlasov equations (1) possess a 'good' Bsicklund auto- 
transformation too. 

The two seemingly different approaches to constructing Bsicklund autotransforma- 
tions, the methods by Chen [16] and by Weiss [13], are actually based on one idea: 
two d@ferenf Miura transformations, which both map an auxiliary system into the 
investigated system, generate a Backlund autotransformation for the investigated sys- 
tem. The Weiss approach determines such a pair of Miura transformations by truncating 
singular expansions, whereas the Chen approach derives it from a Lax pair (see also 



L37 

[17]). The two ways may lead to different results, as -it happens for the nonlinear 
Schrodinger equation. However, Miura transformations can be worked wilh irrespec- 
tively of the Painlevi~property and Lax pairs (see e.g. [I81 and references therein). A 
procedure of finding admissible Miura transformations for nonlinear systems in the 
Kovalevskaya form is analogous with the procedure for scalar evolution equations, and 
we will describe it elsewhere. The result, obtained by very hard calculations, is a3 
follows. The auxiliary system 
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iu, = U, + (U I U, 1’ + fu*&)(A - I u [’)-I + ku I U 1’- iu(A - I u l’)’/’ 
V, +fu(u,~* -+)(a- 1 u l2)-’+ i a u +  uw = 0 

wx=$ip(uxu* - u.%)(A- I u I ’)-I +$(uu* + u*u) 

(10) 

is mapped into system (1) by the following pair of Miura transformations (the upper 
or lower sign is taken for all expressions simultaneously) : 

1 U I ’)-I -I$ U a = 

p =  -uw -iflu*$u(A- 1 ~ 1 ’ ) ‘ ”  
r=w(A- 1 u1*)’/’ ++(uv* +u*u) 

(11) 

where functions U and U are complex, function w is real, and A is any real constant. 
The pair (1 1) and system (IO) generate a Backlund autotransformation for system (1) 
(and for ‘complexified‘ system (2) as well, if one supplements (IO) and (11) by complex 
conjugations and considers U* and U* as independent of u and U). This Bicklund 
autotransformation seem; to be derivable from the Lax pair [7,9] of Doktorov-Vlasov 
equations (1) by the Chen method [16]. Indeed, taking i=u,(A-l u1’)-’+6u and ri= 
u,(A-l -;U from (11) and removing U from these expressions, we get one simple 
relation between the a components of ‘old‘ and ‘new’ solutions of (I): ux-rix= 
f(a+@(A-I a-ai’) (however, relations between other components are complicated 
and hardly useful). The Chen method [I61 giv& the same relation for the nonlinear 
Schrodinger equation iat=a,,+i.a a which has the same L-operator as the Doktorov- 
Vlasov equations have. 

This work was supported by Grant Q2-023 of the Fund for Fundamental Research, 
Republic of Belarus. 
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